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Transition to a turbulent spectrum in the presence of viscous damping
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The local equation for wave turbulence is used to derive an expression for the minimum energy flux re-
quired to both overcome viscous damping and generate a Kolmogorov type of turbulent spectrum. This
expression is verified numerically by solving the kinetic equation for the interaction of acoustic waves.
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A system of interacting waves is considered turbulent
when it is driven so far off equilibrium that reversible
nonlinear processes dominate irreversible linear trans-
port, and when many modes of the system lie within a
bandwidth determined by nonlinear processes. If an en-
ergy flux (or energy throughput) is injected by a source at
a low wave number (k) so as to drive the system far off
equilibrium, reversible nonlinear processes transport the
energy to higher and higher wave numbers until, finally,
ordinary viscous damping converts the energy into heat
(at wave number k(). The region between k; and k;
(known as the inertial regime) is typically characterized
by a steady-state power-law distribution analogous to the
Kolmogorov spectrum of vortex turbulence [1]. This
power spectrum, e(w), which characterizes the stochastic
distribution of off-equilibrium propagating waves (wave
turbulence), depends upon the dimension and the disper-
sion law. For gravity waves on the surface of a fluid
e(w)~1/w* whereas for capillary waves, acoustic waves,
and Alfvén waves e(w)~ 1/w3/? [2-4]. Wave turbulence
also accounts for the spectrum of wind-driven surface
waves in the ocean [3] and Alfvén waves driven by the so-
lar wind [5]. A minimum energy flux g,,, supplied by a
source, is required to drive the system sufficiently far off
equilibrium so that the degree of excitation is large
enough to overcome viscous damping. Once this condi-
tion is established, an inertial regime characterized by the
aforementioned power laws is established.

Figure 1 shows the computer simulation of the ap-
proach to wave turbulent states as g increases. These
simulations are based on the full kinetic equation for in-
teracting acoustic waves as described below. The hy-
pothesis of locality, as introduced by Kolmogorov [1],
was not assumed for the simulations yielding Fig. 1. If
locality is assumed, it can be the basis for an analytic
derivation of g, as a function of the dissipation
coefficient v. The hypothesis of locality has been used to
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determine various aspects of the steady-state power spec-
trum for fully developed turbulence. By locality we mean
that the rate of change of energy at some wave number k
(or frequency w) is due to processes at nearby wave num-
bers [6] (e.g., kK /2) and not at the source of energy input
located at k,. Using the hypothesis of locality, we find
that g,, ~v2. Our computer simulations, which do not
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FIG. 1. Turbulent steady-state spectra for v=>5X 10°. Eleven
steady-state spectra were generated for input fluxes ranging
from 102! up to 10%° (a=1X10?, b=5X10%, ¢=1X10%,
d=5X10%, e=1X10%, f=5X10%, g=1X10%*, h=5X10%*,
i=1X10%, j=5X10%, and k=1X10%). The flux was input
over a Gaussian distribution of modes centered at i =2. The in-
itial condition used for each case was a Rayleigh-Jeans distribu-

tion with T=2000. For this dissipation coefficient,
qm =5X10%5.
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assume locality, yield results in agreement with g,,, as
shown in Fig. 2. The Mach number is a key dimension-
less parameter for sound defined by the expression
M =v /c, where v is the fluid velocity and c is the speed of
sound. We find that M?>~v, where M, is the critical
Mach number resulting in a turbulent spectrum.

Our interest in acoustic wave turbulence is based upon
(i) the possibilities it offers for controlled laboratory ex-
periments, and (ii) the existence of a closed kinetic equa-
tion from which one can numerically calculate the time
development of the spectral density, thus verifying the re-
sults derived from Kolmogorov’s local-scaling argu-
ments.

The local equation that describes the rollover of acous-
tic energy density E, between frequency regions n and
n +1 (in region n; 2"wy<w <2" Tlawy) is
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where p is the density and G[=1+(p/c)dc/dp] is the
Gruneisen coefficient that determines the nonlinear cou-
pling of sound modes. The above equation describes the
rate at which three-wave processes cause energy in region
n to rollover into region n + 1 via frequency doubling (the
subscript + on the time derivative indicates that we are
calculating the rate of change due to processes occurring
at frequencies up to region n +1). According to the prin-
ciple of locality, the dominant interactions should involve
waves with nearly equal wave numbers. So for quadratic
nonlinearity, the major consequence of the interactions is
to generate a frequency-doubling cascade. In addition to
the three-wave process, which is proportional to EZ, Eq.
(1) includes the usual linear viscous damping as described
by the quality factor Q=w/vk? For this case a tur-
bulent spectrum will result when the degree of excitation
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FIG. 2. Relation between g,, and v. The minimum flux g,

resulting in a turbulent spectrum is plotted as a function of the

dissipation coefficient. As shown g,, =~V
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is high enough to overcome damping or when the condi-
tion

E, 1
>> (2)
pc Q,G?
or
2 1
M;>> G2 (3)

n

is satisfied. Expressions (2) and (3) are correct to within a
numerical constant. In Eq. (3), M, is the Mach number
in the region n, which, in terms of E,, corresponds to

E
T =M, @)
pc

where the symbol = implies equality except for a numeri-
cal factor. In the limit where (2) applies, we can neglect
the damping and search for a steady-state solution where
the rate of energy rollover g (which is also the rate of en-
ergy throughput or flux) is independent of n so that
E,=(pc2q)'"?/|G|w}’?. The steady-state spectral density
e(w) is then given by

2,\1/2
e(w)=-Alpc7q) ™ 5)

)=
VrlGlad?

where A(=0.138) is the acoustic Kolmogorov constant
[7]. Using the definition for Q, Eq. (5), and the fact that
b +1 o

&=L% Ye(w)dw ©

the minimum flux g,, can be calculated by setting
E,/pc?’=1/Q,G? to yield

3 .2
__ magpv
dm = CZGZAZ s (7a)

where B is a numerical constant and w, is the input fre-

quency. The expression for the critical Mach number is
then given by

(BI/ZCOO,V)I/Z
M, = eIG] (7b)
When g >g,, there exists an inertial regime where the
turbulent spectrum follows a —3 power law. On the oth-
er hand, if ¢ <gq,,, viscous damping will dominate over
the entire frequency range, preventing the formation of a
turbulent spectrum that is characterized by a power-law
solution.

The off-equilibrium kinetic equation for three-wave in-
teractions is solved to verify Eq. (7a) and to calculate the
coefficient B. The kinetic equation that we use is the
Peierls [8], Landau-Khalatnikov [9] phonon-Boltzmann
equation for an isotropic continuum in the limit where
Planck’s constant goes to zero. This kinetic equation can
also be derived in its own right from classical fluid
mechanics [10] or in a more general form from the classi-
cal theory of nonlinear coupled oscillators [11]. In di-
mensionless discrete form, the kinetic equation for the
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time development of the action I is [7]
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In Eq. (8) we have introduced the dimensionless variables
and characteristic action I:
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where T is the temperature of the equilibrium state, N is
the number of intervals into which the kinetic equation
has been discretized, and A is the width of each frequency
interval [0;=A; and I;=1(jA)]. In writing Eq. (8) (and
in the figures) the bars have been dropped. In this
analysis the sink is provided by the viscous damping v.
This method of energy removal is similar to that used in
Ref. [12]. Use of a kinetic equation with heat bath-
damping requires the introduction of the term N /i,
which is the equilibrium value of the action. Fluctua-
tions prevent the action from decaying below this value.
The equilibrium solution (when both ¢ =0 and v=0) is a
Rayleigh-Jeans distribution corresponding to the equipar-
tition of energy.

The kinetic equation (8) was numerically solved for
N =400 on an Alliant FX-80 computer. A steady-state
spectrum was generated for multiple values of the energy
flux ranging from 10%' up to 10%, and for several values
of the damping coefficient v ranging from 10° up to
6Xx10'. For each value of v, steady-state spectra were
created for the range of input fluxes. For all cases, the
flux was input over a Gaussian distribution of modes cen-
tered at i =2 (i is the discretized frequency w). The initial
condition for all cases was a Rayleigh-Jeans distribution
with 7=2000. Figure 1 depicts an example of the nu-
merical experiments. Plotted in Fig. 1 are 11 steady-state
spectra; each spectrum was generated with a different
flux and the same dissipation coefficient v=5X10°. Plot
i, j, and k in Fig. 1 are good examples of steady-state tur-
bulent spectra that follow a —2 power law for over one
and a half decades before joining the Rayleigh-Jeans equi-
librium distribution. A set of figures similar to Fig. 1
were used to calculate the minimum flux g,, at which
only a few modes follow a —3 power law. In all cases,
when g¢;, =g¢,,, the spectra follow a —3 power law over
modes ranging from i =7~10. The minimum flux g,, was
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plotted as a function of the dissipation coefficient (see
Fig. 2) to verify the relation between g,, and v [Eq. (7a)]
and to calculate the constant 8. As shown in Fig. 2, the
numerically calculated minimum flux is g, =2X10%2.
Our operational definition of the constant 3 will be when
three to four modes are self-similar or follow a —3 power
law. To calculate this coefficient, we use Eq. (7a), the ex-
pression for the dimensionless minimum flux,

i3
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and select a frequency, i =8.5, which is centrally located
between i =7 and 10. Using this operational definition,
we find that the constant S==0.62, which is essentially of
order 1.

We have found that the above result does not depend
on the location or width of the source, provided that the
energy flux is input at a low frequency where it is far
from the sink (or the high-frequency regime, where
viscous damping is large). Finally, similar results are ob-
tained when changing the number of modes from 400 to
2000.

For the example shown in Fig. 1, g,, =5X10? (curve
f). The critical Mach number, M,, can be calculated us-
ing Egs. (9), (7), and (4). Expression (9) must be used to
recover physical values for the flux and dissipation
coefficient from the dimensionless variables. Taking
p=1.0 g/cm® ¢ =10* cm/sec, and A=10° Hz so that
T =20 mK, a critical (dimensionless) flux of 5X 10%? cor-
responds to a critical Mach number of order 10~7. If
q <gq,,, or, equivalently, M <M,_, the steady-state distri-
bution does not follow a turbulent power law. However,
if ¢>gq,,, there exists an inertial regime in frequency
space that follows the —3 power law. As g is increased,
this inertial region will expand to cover over a decade be-
fore rejoining the initial Rayleigh-Jeans distribution. For
the case where ¢ >>g,, (e.g., ¢ =10% in Fig. 1), the tur-
bulent power spectrum no longer joins the initial distribu-
tion at high frequency. Instead, the power spectrum joins
a Rayleigh-Jeans distribution having a higher tempera-
ture.

In this paper we have derived an expression for the
minimum flux g,, required to overcome dissipation so
that the degree of excitation is high enough to form a tur-
bulent spectrum following a self-similar power-law solu-
tion. We have numerically solved the kinetic equation to
verify the relation between g,, and v and calculate the
constant 3. An experiment designed to study the steady-
state spectrum of a turbulent system can also be used to
observe this transitional region for acoustic turbulence.
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